Viral Search algorithm
نویسنده
چکیده
Un algoritmo genetico è un algoritmo euristico ispirato alla teoria darwinaiana dell’evoluzione ed ai concetti di selezione naturale ed evoluzione biologica. Gli algoritmi genetici permettono di valutare le soluzioni di partenza, ricombinarle ed, introducendo elementi di disordine, produrne di nuove convergendo, così, alla soluzione ottima. Nel corso degli ultimi decenni molti problemi concreti sono stati affrontati come problemi di massimizzazione o minimizzazione di una certa funzione obiettivo. Basti pensare ai vari problemi di tipo industriale di minimizzazione dei costi, di massimizzazione dei ricavi, di gestione ottima delle risorse e così via. Numerosi metodi sono stati sviluppati per risolvere il problema di trovare il massimo o il minimo di una data funzione quando essa è soggetta a vincoli. Tra essi particolarmente diffusi sono il metodo del simplesso [2], il metodo dei moltiplicatori di Lagrange, i metodi del gradiente [5] e del punto interno [3]. Come è ben noto gli aspetti più critici dei problemi di ottimizzazione insorgono quando si presentano non linearità o nella funzione considerata o nei vincoli che rendono il problema non convesso, quando sono presenti più minimi o massimi locali o quando la funzione non è differenziabile: in questo ultimo caso il metodi basati sul gradiente falliscono poichè le derivate direzionali non possono essere calcolate. L’uso degli algoritmi genetici risulta particolarmente adatto in tutte queste situazioni poichè essi presentano certe caratteristiche che gli permettono di aggirare i problemi sopra elelencati. In particolare essi:
منابع مشابه
The Urban Path Routing Adjustable Optimization by Means of Wavelet Transform and Multistage Genetic Algorithm
This paper introduces the optimization algorithm to improve search rate in urban path routing problems using viral infection and local search in urban environment. This algorithm operates based on two different approaches including wavelet transform and genetic algorithm. The variables proposed by driver such as degree of difficulty and difficulty traffic are of the essence in this technique. W...
متن کاملfinding influential individual in Social Network graphs using CSCS algorithm and shapley value in game theory
In recent years, the social networks analysis gains great deal of attention. Social networks have various applications in different areas namely predicting disease epidemic, search engines and viral advertisements. A key property of social networks is that interpersonal relationships can influence the decisions that they make. Finding the most influential nodes is important in social networks b...
متن کاملImproved Cuckoo Search Algorithm for Global Optimization
The cuckoo search algorithm is a recently developedmeta-heuristic optimization algorithm, which is suitable forsolving optimization problems. To enhance the accuracy andconvergence rate of this algorithm, an improved cuckoo searchalgorithm is proposed in this paper. Normally, the parametersof the cuckoo search are kept constant. This may lead todecreasing the efficiency of the algorithm. To cop...
متن کاملVoltage Sag Compensation with DVR in Power Distribution System Based on Improved Cuckoo Search Tree-Fuzzy Rule Based Classifier Algorithm
A new technique presents to improve the performance of dynamic voltage restorer (DVR) for voltage sag mitigation. This control scheme is based on cuckoo search algorithm with tree fuzzy rule based classifier (CSA-TFRC). CSA is used for optimizing the output of TFRC so the classification output of the network is enhanced. While, the combination of cuckoo search algorithm, fuzzy and decision tree...
متن کاملAN IMPROVED INTELLIGENT ALGORITHM BASED ON THE GROUP SEARCH ALGORITHM AND THE ARTIFICIAL FISH SWARM ALGORITHM
This article introduces two swarm intelligent algorithms, a group search optimizer (GSO) and an artificial fish swarm algorithm (AFSA). A single intelligent algorithm always has both merits in its specific formulation and deficiencies due to its inherent limitations. Therefore, we propose a mixture of these algorithms to create a new hybrid optimization algorithm known as the group search-artif...
متن کاملMulti-Objective Tabu Search Algorithm to Minimize Weight and Improve Formability of Al3105-St14 Bi-Layer Sheet
Nowadays, with extending applications of bi-layer metallic sheets in different industrial sectors, accurate specification of each layer is very prominent to achieve desired properties. In order to predict behavior of sheets under different forming modes and determining rupture limit and necking, the concept of Forming Limit Diagram (FLD) is used. Optimization problem with objective functions an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1606.04306 شماره
صفحات -
تاریخ انتشار 2016